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Abstract
The application of the lattice Boltzmann method to evaluate the far-field normal
mode radiation pattern from an unflanged cylindrical waveguide is considered
in this paper. The parameters associated with the radiation process such as
directivity factor, end correction and reflection coefficient are predicted and
compared with the theory of inviscid normal mode radiation derived by Levine
and Schwinger. The good agreement found between numerical and analytical
results, as well as the ability to intrinsically resolve fluid dynamics and acoustics
problems suggests that the lattice Boltzmann approach is a useful tool to predict
complex phenomena involving duct acoustics, such as nonlinear dissipation and
the interaction between the acoustic field and the presence of a mean flow.

PACS numbers: 43.55.Rg, 47.35.Rs, 43.20.+g

1. Introduction

Much attention has been focused over the last century on the mechanisms of acoustic radiation
from open-ended waveguides. Analytical predictions of the generated external sound field
are usually derived based on a common simplification in which the sharp edge at the open
end is substituted by a surrounding infinite flange. This unrealistic boundary condition can be
useful for predicting the radiation within the hemisphere beyond the open end but becomes
inaccurate for the prediction of backward radiation, as demonstrated experimentally by Tyler
and Sofrin (1962). This is due to the fact that the infinite flange approach neglects the influence
of diffraction effects that take place at the sharp edge of a realistic open end.

The characteristics of the external sound field can be determined from the reflection
experienced by the outgoing wave at the open end of the waveguide. This reflection is a
function of the wavelength λ and will be determined by the boundary condition at that point.
The reflection also acts to increase the effective length of the waveguide by a certain fraction
of its output radius a (Pierce 1981). Several analytical predictions for the reflection coefficient
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R, as well as for the end correction l, have been proposed over the years for normal mode
propagation (plane waves). Rayleigh (1877) found l � 0.6a for an unflanged cylinder in
the low-frequency limit (ka � 1, where k = 2π/λ is the wavenumber). Many years later,
King (1936) presented the exact solution for l of a flanged cylinder. At low frequencies he
found l = 0.82a. Levine and Schwinger (1948) were the first to obtain an exact solution
for l of an unflanged cylinder by using the Wiener–Hopf technique. In the low-frequency
limit, they found l = 0.6133a. Furthermore, they also presented exact expressions for R
and for the far-field acoustic pressure directivity Gφ around the cylinder’s open end, both as
functions of the characteristic parameter ka. However, predicting the acoustic field with the
analytical approach becomes increasingly difficult as one considers waveguides with complex
geometries, high modes of propagation or even nonlinearities caused by the interaction between
mean flow and the acoustic field, such as vortex shedding (Powell 1964, Schlichting 2004) and
energy losses (Howe 1984). In this case, numerical techniques are more likely to be suitable.

Most numerical techniques resolve the problem of wave radiation from a waveguide using
continuum theory, where the sound field is described by temporal and spatial evolutions of the
acoustic domain through partial differential equations. As examples, Chen et al (2004) recently
predicted the far-field normal mode radiation from an unflanged cylinder using a computational
aeroacoustics (CAA) technique involving the linearized and integral solutions of Euler and
Ffowcs-Williams–Hawkings equations (Williams and Hawkings 1969), respectively. The
same problem was approached by Özyörük and Long (1996) using a three-dimensional Euler
solver coupled with the Kirchhoff method and by Rumsey et al (1998) using a Navier–Stokes
indirect solver coupled with the Kirchhoff method.

Although being extensively used in problems involving fluid dynamics, the lattice
Boltzmann method has only been explored by a limited number of researchers to specifically
predict acoustic wave phenomena. Skordos (1995) simulated the interaction between fluid
flow and acoustic field within organ pipes. Buick et al (1998) simulated the propagation of
linear sound waves using different boundary conditions and latter Buick et al (2000) simulated
the formation of shock waves. Haydock and Yeomans (2001) predicted the acoustic streaming
around a cylinder and between two plates of finite length. More recently, Haydock (2005)
also predicted the influence of the fluid viscosity on the force impinged by an acoustic field
on a rigid cylinder.

The objective of this paper is to demonstrate that the lattice Boltzmann technique can
be used to predict the sound field from a radiating waveguide through the direct solution of
the Navier–Stokes equation, representing an alternative to the traditional techniques based on
continuum theory. For that, we calculate the normal mode reflection coefficient, end correction
and acoustic far field from an unflanged cylinder and compare the results with the solutions
presented by Levine and Schwinger.

The next section introduces the lattice Boltzmann technique used in this paper. Section 3
discusses the problem of plane mode acoustic radiation from waveguides, summarizes the
exact analytical solutions available and describes the numerical model. Section 4 presents
the comparison between analytical solutions and numerical results obtained in terms of end
correction, reflection coefficient and directivity factor. Finally, in section 5 we present the
conclusions from the results obtained in the previous section.

2. Lattice Boltzmann D2Q9 model

Lattice Boltzmann (LB) is classified as a nonequilibrium method, whereby the fluid domain is
investigated at the particle level. The acoustic field is described by the positions and velocities
of all particles within the grid at all time steps. A full description of the lattice Boltzmann
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Figure 1. The squared grid for the axisymmetric D2Q9 lattice Boltzmann model.

theory can be found in several works (Qian et al 1992, He and Luo 1997, Wolf-Gladrow 2000,
Succi 2001). LB evolved from the cellular automata method by adopting a simplification of
the Boltzmann equation to describe straightforward collision rules that conserve mass and
momentum.

In this paper, we use a D2Q9 model first proposed by Qian et al (1992) and adapted for
pipe flows by Halliday et al (2001). The adaptation is based on the assumption that the flow
is symmetric about the pipe’s axis and thus can be expressed by the incompressible Navier–
Stokes equations in cylindrical polar coordinates. Following this assumption, the derivatives
associated with the azimuthal coordinate ϑ , as well as the azimuthal component of velocity
uϑ vanish, which allows the flow to be simply represented by the axial and radial coordinates,
x and r, respectively. Hence, the continuum and momentum equations are expressed by
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∂ur
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where p is the pressure, υ is the fluid’s kinematic viscosity and ux and ur are the axial and
radial components of the velocity, respectively.

Halliday et al (2001) have shown that equations (1)–(3) can be fully recovered from the
lattice Boltzmann equation by performing a Chapman–Enskog expansion. However, this is
only achievable by inserting space- and time-dependent ‘source’ terms into the standard lattice
Boltzmann equation (see equation (4)).

Identically to the standard D2Q9 model, the adapted version is represented by a two-
dimensional squared lattice with nine sites. Each site connects to a neighbour lattice by a
unity vector ci , where i = 1, 2, . . . , 8 indicates the site number, with the exception of the rest
site i = 0, represented by the null velocity vector c0 as illustrated in figure 1. The rest site
plays an important role in improving the model accuracy by removing the unphysical velocity
dependency of pressure (Qian et al 1995).

The adapted Boltzmann equation uses the simplified Bhatnagar–Gross–Krook (BGK)
collision function approximation defined with a single relaxation time τ , given by

fi(x + cix, r + cir , t + 1) − fi(x, r, t) = − 1

τ

[
fi(x, r, t) − f M

i (x, r, t)
]

+ h′
i + h′′

i (4)

where fi are the distribution functions associated with the vectors ci at a site defined by the
axial and radial coordinates x and r and time t. f M

i are the equilibrium distribution functions



400 A R da Silva and G P Scavone

which depend on the local fluid velocity u(x, r, t) and local fluid density ρ(x, r, t). h′
i and

h′′
i are the inserted source terms so that equations (1)–(3) can be recovered. One should note

that the presence of the source terms in equation (4) represents the only distinction from the
standard BGK lattice Boltzmann equation.

The general expressions of the equilibrium functions f M
i associated with the D2Q9 model

are given by

f M
i =

{
ρwi

[
1 + 3ci · u + 9

2 (ci · u)2 − 3
2 u2

]
for i = 1, 2, . . . , 8

ρ
[

4
9 − 2

3 u2
]

for i = 0
(5)

with w1 = w2 = w3 = w4 = 1/9 and w5 = w6 = w7 = w8 = 1/36.
The source terms on the right-hand side of equation (4) are expressed by

h′
i = −wiρ0ur

r
(6)

h′′
i = wi

3υρ0

r

[
∂y

p

ρ0
+ ∂xuxur + ∂urur + cix(∂rux − ∂xur)

]
. (7)

The stresses and higher order fluxes in equation (7) can either be calculated by means
of discrete difference approximations of second-order accuracy or in terms of higher order
moments of fi . In our simulation, we use the second approach proposed by Lee et al (2005).
The derivation of the source terms h′

i and h′′
i , as well as the techniques for solving equation

(7) is described in Halliday et al (2001) and Lee et al (2005).
The local macroscopic variables ρ and u are obtained in terms of the moments of the local

distribution function fi by

ρ(x, r, t) =
∑

i

fi(x, r, t) ρ(x, r, t)u(x, r, t) =
∑

i

fi(x, r, t)ci . (8)

The left-hand side of equation (4) represents the convection operator and determines
the diffusion of the distribution functions fi over the lattice grid. The right-hand side
determines the rate of change of fi due to intermolecular collisions. This process, known as
relaxation, forces fi towards equilibrium and controls the viscosity of the fluid, recovering its
nonlinear form whereby the nonlinear Navier–Stokes equation in cylindrical polar coordinates
is satisfied. The Chapman–Enskog expansion on equation (4) (Lee et al 2005) gives the
expressions for the macroscopic parameters such as pressure p, viscosity υ and speed of sound
c0 by

p = ρ

3
, υ = 2τ − 1

6
and c0 = 1√

3
. (9)

3. Radiation from an open unflanged pipe

In this section, we consider the problem of acoustic radiation due to the inviscid propagation of
plane waves within an open unflanged cylinder. In this circumstance, when the outgoing wave
reaches the open end of the waveguide, part of its energy is returned in terms of a reflected
wave with the same modal characteristics. The remainder of the energy is transported away
into the external space by a spherical wave. The velocity potential inside the waveguide is the
same as if the waveguide were lengthened by a fraction of its open-end radius. The reflection
coefficient R, defined as the complex ratio between the pressure magnitudes of the reflected
and incident waves, the end correction l and the angular distribution of the emitted radiation
expressed in terms of directivity factor Gφ are functions of frequency.
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The directivity factor Gφ is symmetric about a waveguide’s axis if the waveguide is also
symmetric about the same line. Thus, in the case of a straight cylinder, Gφ is described by a
single angle φ(x, r) measured from the cylinder’s axis at a distance d away from its open end.

Our goal now is to determine the end correction l, the amplitude and phase of the reflected
wave, represented by the reflection coefficient R, and the directivity factor Gφ from a straight
cylinder. We then compare the results with those provided by Levine and Schwinger (1948)
for inviscid normal mode propagation. The axisymmetric nature of the problem allows us to
use the model described in the previous section to estimate these parameters.

3.1. Summary of the exact analytical solution

The analytical expressions presented below have been obtained for a cylinder with negligible
wall thickness by the application of the Wiener–Hopf technique and are correct provided
that only dominant mode propagation takes place in the pipe. This requires the value of the
maximum frequency of analysis to be inferior to that of the cut-off frequency for dominant
modes. In the case of cylinders, the cut-off frequency for dominant modes can be expressed
in terms of the characteristic parameter ka and is determined by the first zero of the derivative
of a first-order Bessel function of the first type. In this case, ka = 3.82.

By choosing the end of the pipe as the reference plane, the complex reflection coefficient
in terms of velocity potential for the dominant mode is given by

R = exp

[
2ka

π

∫ ka

0

tan−1(−J1(x)/N1(x))

x[(ka)2 − x2]1/2
dx − 2ikl

]
. (10)

Here and in the following, J1 and N1 are Bessel and Neumann functions of the first order and
first type, respectively. The end correction, in units of the pipe radius, is given as

l

a
= 1

π

∫ ka

0

[
log[πJ1(x)[(J1(x))2/N1(x)]1/2]

x[(ka)2 − x2]1/2

]
dx

+
1

π

∫ ∞

0

[
log[1/(2I1(x)K1(x))]

x[x2 + (ka)2]1/2

]
dx (11)

where I1 and K1 are both first-order modified Bessel functions of first and second kinds,
respectively.

The normalized far-field directivity factor obtained by the Winer–Hopf technique is given
by

Gφ = 2

(
2ka

π

)1/2
J1(ka sin φ)

sin φ(1 + cos φ)1/2

|R|
1 − |R|2

× exp

[
ka cos φ − 1

π

∫ ∞

0

tan−1(K1(x)/πI1(x))

(x2 + (ka)2)1/2 + ka cos φ

x dx

(x2 + (ka)2)1/2

]
. (12)

The integrals in equations (10)–(12) are evaluated numerically using the adaptive Lobatto
quadrature method. The infinity upper limits found on the integrals of equations (11) and (12)
are truncated at a value equal to 100, although the integrals converge for upper limits much
smaller than this.

3.2. Numerical simulation

Our computational model is represented by a closed-open cylinder inserted in a fluid domain
surrounded by open boundaries as illustrated in figure 2. The square grid is defined with 1000
lattices along each axis. The walls of the cylinder, as well as its closed end, are represented
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Figure 2. Scheme of the axisymmetric lattice Boltzmann model of a radiating unflanged pipe.

with dry lattices of thickness δ = 1. The cylinder has the length L = 500 and radius a = 10.
Here and in the following, the dimensions are expressed in terms of lattice cells.

In order to validate our lattice Boltzmann model based on the analytical solutions presented
in the previous section, two restrictions must be taken into account. First, the solutions are only
valid for inviscid wave propagation. Secondly, the wall thickness of the cylinder is assumed
to be infinitely small. We circumvent the problem associated with the first restriction by
choosing a specular free-slip boundary condition (Succi 2001) to avoid transfer of momentum
by the tangential motion of particles along the walls and thus force the effect of acoustic
boundary layer to be negligible. Furthermore, we choose the viscosity υ = 9.5 × 10−4 which
corresponds to a trade-off between a negligible viscosity and the smallest value supported by
the BGK scheme before being affected by numerical instabilities1. The second restriction
is overcome by adopting the modified version of equation (12) for cylinders with finite wall
thickness, as proposed by Ando (1968). In this case, the value of a is replaced by the value of
the outer radius ao, so that ao = a + δ.

As a matter of convenience, we use an undisturbed fluid density ρ0 = 1. A density
perturbation ρ ′ = 0.001 was applied at the closed end of the cylinder in order to excite
the system from its rest state (see figure 2). The perturbation was implemented in the
form of a Hanning impulse, so that ρ = ρ0 + ρ ′[0.5 + 0.5 cos

(
2πx
N

+ π
)]

and ux =
ρ ′c0

ρ0

[
0.5 + 0.5 cos

(
2πx
N

+ π
)]

, where N = 10 was the width of the impulse. The use of a
smooth impulse is necessary to minimize the production of high-frequency noise associated
with the BGK scheme, as previously mentioned. The magnitude of the impulse is chosen

1 The effect of the numerical instabilities associated with small viscosities in the BGK scheme is evidenced in
terms of high-frequency noise caused by the use of a single relaxation time τ for the entire set of discrete velocities
representing the collision function in equation (4), as described in Lallemand and Luo (2000).
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(a) (b) (c)

Figure 3. Snapshots from the LB simulation of the radiating cylinder. The figures represent the
propagation and radiation of the input perturbation in terms of pressure for different time steps:
(a) t = 600, (b) t = 1093 and (c) t = 1537.

to be sufficiently small to guarantee linear wave propagation. We expect the disturbance
to propagate as a wavefront throughout the cylinder until the open end where it will be
partially reflected and partially radiated to the outer domain in terms of spherical waves
with axisymmetric characteristics. Figures 3(a)–(c) depict different time steps of the lattice
Boltzmann simulation.

4. Results

4.1. Reflection coefficient and end correction

The complex reflection coefficient for plane waves at any point x inside the cylinder is given
by

R(x, ω) = Z0

(
Z(x, ω)/Z0 − 1

Z(x, ω)/Z0 + 1

)
(13)

where ω is the angular frequency, Z(x, ω) is the acoustic impedance, defined as the ratio
between the acoustic pressure P(x, ω) and the volume velocity Ux(x, ω), and Z0 is the
characteristic impedance of a cylinder. When the acoustic dissipation is negligible, Z0 is a
constant given by ρ0c0/A, where A is the cylinder’s cross-section area.

P(x, ω) and Ux(x, ω) are obtained by performing a discrete Fourier transform (DFT) of
the time histories associated with the lattice pressure p(x, t) and the lattice velocity ux(x, t)

after the system has been excited by the input perturbation at time t = 0. However, p and ux

cannot be directly measured at the end of the pipe due to the fact that the wavefront becomes
distorted as it approaches the output, and thus equation (13) is no longer valid. In order to
guarantee a plane wavefront, the values of p and ux are measured inside the pipe at x = −�

before the pipe opening, where � > 2ao. Dalmont et al (2001) present an expression for the
determination of the complex reflection coefficient Rend(ω) at the end of the cylinder based on
the acoustic impedance Z�(ω) measured inside the cylinder at a distance −� from its open
end, given by

Rend(ω) = j tan[arctan(Z�(ω)/jZ0) − k�] − 1

j tan[arctan(Z�(ω)/jZ0) − k�] − 1
. (14)

In order to correctly evaluate Rend, the impedance Z� is determined from the values of p and
ux representing the time history of one round trip of the input perturbation from the measuring
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Figure 4. Comparison between analytical and numerical results. The solid lines represent the
analytical results and crosses represent numerical results. (a) Magnitude value of the complex
reflection coefficient at the end of the cylinder as a function of the characteristic parameter ka.
(b) End correction l in terms of cylinder radius a as a function of the characteristic parameter ka.

point inside the cylinder to its open end. The end correction l is associated with the phase of
Rend and is given Pierce (1981):

l = 1

2jk
ln

(
Rend

|Rend|
)

. (15)

Figures 4(a) and (b) depict the comparisons between theory and numerical results for
the magnitude of the reflection coefficient |Rend| and the end correction, l, as functions of the
characteristic parameter ka.

The general trend found on the numerical result of the magnitude of the reflection function,
Rend, shows that the fraction of reflected energy at the open end is usually higher than the
one predicted by the theory (figure 4(a)). The highest discrepancy between theoretical and
numerical results is seen at the region around ka = 1.5 where numerical values are higher by
∼8%. A better agreement is found in the comparison of results related to the end correction,
l (figure 4(b)). In this case, the highest disagreement is found in the low-frequency region
(small values of ka) where the numerical result is ∼4% higher than the analytical prediction.
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Figure 5. Directivity factor Gφ as a function of the angle φ measured from the axis of the cylinder
for different values of ka. The crossed points represent the numerical results and the solid line
represents the analytical: (a) ka = 0.48, (b) ka = 1.0, (c) ka = 2.0, (d) ka = 2.50, (e) ka = 3.0
and (f ) ka = 3.77.

The discordance between results was expected and is likely to be due to energy leakage
caused by the truncation of the time history associated with p and ux prior to the application
of the discrete Fourier transform to derive Z� in equation (14). The truncation acts as if the
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Figure 6. Evaluation of the region of ka at which the far-field condition is satisfied for a distance
r = 250 and φ = 0◦: (a) radiation impedance and (b) phase between acoustic pressure and particle
velocity.

resulting spectra of p and ux were obtained by the convolution in frequency of their non-
truncated spectra with the spectrum of a rectangular window having the same duration as p
and ux and magnitude equal to the unity (Oppenheim and Shafer 1999). We could minimize
the effect of truncation by increasing the size of the time histories of p and ux . However, the
open boundary in the model (see figure 2) is not perfectly anechoic. Therefore, reflections
from that region would return back to the measuring points and, consequently, compromise
the simulation

4.2. Radiation directivity

We now present the results obtained for the radiation directivity Gφ , measured from the axis
of the pipe. The definition of Gφ is given by

Gφ = P 2
φ

P 2
h

(16)

where P 2
φ is the mean-square sound pressure at angle φ and distance d from a directional

acoustic source of a certain acoustic power, whereas P 2
h is the mean-square sound pressure

from an omnidirectional source of equal acoustic power, measured at the same distance.
In our simulation we evaluate Pφ by performing a DFT on the values of pφ measured at

85 different angles from the axis of the cylinder between φ = 0◦ and φ = 170◦. For economy
reasons, we restricted our analysis to a fixed distance d = 250 from the cylinder’s open end.
Ph is evaluated from the averaged value of P 2

φ along the angles.
Figure 5 presents the results for the directivity factor Gφ . A poor agreement between

analytical and numerical results can be seen for small values of ka, particularly when ka < 1,
as depicted in figures 5(a) and (b). Conversely, the agreement increases as ka → 3.82.
This trend is explained by the fact that Gφ can only be measured in a far-field region whose
minimum distance is inversely proportional to the frequency of the acoustic source. The
far-field condition is satisfied when the acoustic impedance Z of the diverging spherical wave
approximates that of a plane wave, i.e., Z → ρ0c0 and ϕ → 0, where ϕ is the phase between
acoustic pressure and particle velocity.
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Figure 6 presents the plots of Z and ϕ as functions of ka, obtained from the LB model at
a distance d = 250 and angle φ = 0. They illustrate the values of ka from which the far-field
condition can be assumed and explain the discrepancy between theoretical and numerical
results for the directivity factor Gφ , particularly for values of ka < 1, as shown in figure 5.

The graphics depicted in figure 6 show that, although the impedance Z converges rapidly
to ρ0c0

2 for small values of ka (figure 6(a)), the phase between acoustic pressure and particle
velocity, ϕ, only approximates zero for values of ka > 2 (figure 6(b)).

5. Conclusions

In this paper, we demonstrated that a BGK lattice Boltzmann model can be used to accurately
predict the acoustic far field of a radiating cylinder when considering normal mode radiation.
We also used this technique to predict the other variables associated with the radiation process,
namely, the effective length of the cylinder and the reflection coefficient at the open end, both
as functions of the characteristic parameter ka.

In general, the results of the simulation agreed well with the analytical solution proposed
by Levine and Schwinger for inviscid wave propagation. They also suggested that a large fluid
domain is required for the prediction of the directivity factor Gφ , as well as for the prediction
of the parameters associated with the reflection at the open end, namely Rend and l. In the
first case, the large domain is necessary for the fulfilment of the far-field condition at low
frequencies. In the second case, a large domain is desired to enlarge the time histories of the
particle velocity ux and acoustic pressure p in order to minimize the effect of truncation.

In future, we plan to investigate the influence of the acoustic viscous layer on the directivity
pattern and, added to that, the influence of the interaction between acoustic and fluid fields
when a turbulent flow is present. Another substantial direction is to consider radiation due to
higher propagation modes such as transversal spinning modes.
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